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Abstract−The goal of this paper is to identify and control multi-input multi-output (MIMO) processes by means of
the dynamic partial least squares (PLS) model, which consists of a memoryless PLS model connected in series with
linear dynamic models. Unlike the traditional decoupling MIMO process, the dynamic PLS model can decompose the
MIMO process into a multiloop control system in a reduced subspace. Without the decoupler design, the optimal tuning
multiloop PID controller based on the concept of general minimum variance and the constrained criteria can be directly
and separately applied to each control loop under the proposed PLS modeling structure. Several potential applica-
tions using this technique are demonstrated.
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INTRODUCTION

Controlled processes in nearly all chemical industries frequently
encounter the need for more than one variable to be controlled. They
are known as multivariable or multi-input multi-output (MIMO)
processes. The control of multivariable systems is not always an
easy task due to its complex and interactive nature. Most of the auto-
matic tuning methods are intended for single-input single-output
(SISO) processes. Few of them are intended for MIMO processes
[Kashiwagi and Li, 2004; Palmor et al., 1995; Oh and Yeo, 1995;
Zhuang and Atherton, 1994] because SISO is easy to understand
and readily available in hardware and software. A critical step in
the multiloop dynamic control design of the dynamic MIMO is the
development of a suitable model that pairs the control loops. Multi-
variable PID controllers were discussed in some previous research.
The biggest log modulus tuning (BLT) method [Luyben, 1986] was
designed for each loop, respectively, depending on the tradeoff be-
tween stability and performance of the system. The controller pa-
rameters would be properly adjusted by a detuning factor to main-
tain the stability. The internal model control [Garcia and Morari,
1982] approach was more amenable, but it required full knowledge
of the process. Recently, a sequential design was used for multi-
loop PID controller systems [Shiu and Huang, 1998]. It usually took
a great deal of time to identify the multiloop system and design the
multi single-loop controller in a sequential procedure.

The development of chemometric techniques has spurred a tor-
rent of research in multivariable processes. Those techniques can
be used to extract the state of the system via applications of math-
ematical and statistical methods from the stored data. Several chemo-
metric techniques were proposed, like principal component analy-
sis and partial least squares (PLS). They have received considerable
attention in the field of chemical process problems and have been
applied to system monitoring and diagnosis [Han et al., 2003; Chen
and Yen, 2003; Kourti and MacGregor, 1996; Ku et al., 1995]. Still,
it was rarely on the control problem. All of these works showed

that only a few principal components could capture most of the char-
acteristics of the system pattern in a multivariable process behav-
ior. They also could successfully tackle operational data analysis.
Recently, dynamic PLS for control system design was addressed
[Kaspar and Ray, 1992, 1993]. Dynamic PLS incorporated a dynam-
ic transformation into the standard PLS model. Then the synthesis
method of controller design was used to tune the controller param-
eters on each of the control loops. Another dynamic PLS approach,
also known as a projection-based dynamic model, was proposed
[Lakshminaraynan et al., 1997]. A PLS outer model was first con-
structed. The dynamic relationship between the input and the output
scores was built on the inner model. However, the control objec-
tive was still lumped when model predictive control was used. Al-
though the control performances of the above methods were satis-
factory, the adaptive control design based on the PLS related mod-
els has not been developed.

In the control design, it might be difficult to deal with a time vary-
ing chemical process. To improve the control performance, several
schemes of self-tuning PID controllers were proposed in the past.
Wittenmark [1979] developed the control structure with the PID
algorithm calculated via pole placement design. The method was
limited in the order of the controlled process. The self-tuning PI or
PID algorithms were automatically derived from the dynamic of
the controlled processes [Gawthrop, 1986]. An alternative self-tun-
ing PID controller was built based on the generalized minimum var-
iance control [Cameron and Seborg, 1983]. The control structure
was oriented to have a PID structure. The controller parameters were
obtained by using a parameter estimation scheme. The PID adap-
tive algorithm with the combination of traditional control design
methods (Ziegler-Nichols method and pole placement design) and
a recursive identification procedure was also developed [Bohim
Bobal and Prokop, 1999; Banyasz and Keviczky, 1993]. Other forms
of self-tuning PID can be found in literature [Radke and Isermann,
1987; Ortega and Kelly, 1984; Proudfoot et al., 1983]. However,
the above self-tuning adaptive control approaches are all useful only
for the SISO system.

To improve the multiloop control performance, an adaptive mul-
tiloop PID algorithm is proposed. It combines the general minimum
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variance (GMV) with the decomposition characteristic of the dynam-
ic PLS structure. Dynamic PLS consists of the cascade connection
of a memoryless PLS gain matrix followed by linear dynamic mod-
els. With the dynamic PLS model, the PID algorithm can be imple-
mented directly onto each control loop without any modification.

STRUCTURE OF DYNAMIC PLS MODEL

With M controlled and N manipulated variables, an MIMO pro-
cess whose number of inputs and outputs may be unequal is given
in Fig. 1. There is often coupling in this process; that is, a large dis-
turbance from other loops occurs whenever the manipulated vari-
able of one loop changes. This interaction may cause oscillation
and even instability. In this section, the PLS technique is used to
eliminate the interaction of the MIMO system. First, a brief over-
view of the multivariate PLS statistical technique is presented. Then
the controlled and manipulated variables can be transformed into a
smaller informative set via a set of linear functions which model
the combinational relationship between the controlled variables and
latent controlled variables, and between the manipulated variables
and latent manipulated variables, respectively. Finally, the static PLS
is extended to dynamic PLS to handle the process measurements
with the dynamic behavior.
1. Partial Least Squares

PLS regression derived from the classical linear regression is often
used to predict properties of processes based on variables only in-
directly related to the properties. The given process data are subdi-
vided into two blocks, a dependent block (Y) and an independent
block (X). Y block with a two-way array (I×M) summarizes the I
samples and the M final quality variables. X block with a two-way
array (I×N) organizes process operating N variables. PLS is used
to extract latent variables. The latent variables explain the best cor-
relation between the product quality block (Y) and the process data
block (X).

The standard PLS regression [Höskuldsson, 1988] relies on de-
composing the dependent block (Y) and the independent block (X)
into a sum of rank one component matrices. Before PLS is applied,
each measurement variable that centers and scales the variance to

unit one is typically applied; this will put all variables on an equal
basis. Initially, let X0=X, Y0=Y and r=0. Find a vector (or component)
(wr) which is correlated with Yr while describing a large amount of
the variation in Xr. It can be formulated as

(1)

Then the component is subtracted from Xr and Yr

Xr=Xr−1−trwr
T (2)

Yr=Yr−1−brtrcr
T (3)

and

tr=Xrwr (4)

(5)

where wr and cr are the loadings of Xr and Yr, respectively. The score
(tr) is the projection of Xr into the direction wr. The score (ur) is the
projection of Yr

T into the direction cr. br is the regression coeffi-
cient related to tr and ur,

(6)

Eqs. (2) and (3) are used to remove the variance associated with
the already calculated r-th directions of wr and cr in the variance of
process variables and quality variables, respectively. Then set r=r+1
and repeat the above procedures (Eqs. (1)-(6)) until the description
of Y convergence is properly gotten. Finally, the matrices Y and X
are separately decomposed into the summation of the product of
score vectors t and loading vectors w and c plus some residual ma-
trix E and F, respectively:

(7)

where R is the number of principal components retained in PLS.
Due to its simplicity and easy interpretation, the applications of this
approach can be found in an abundant literature. However, the PLS
model only deals with static rather than dynamic relationships. This
means that it is in the form of a trace of processing without mem-
ory in the previous time observations. It will limit its use to a typical
off-line atmosphere since it does not comply with the dynamic con-
trolled process that contains the serial correlation among the pro-
cess variables.
2. Dynamic PLS Model

A simple method to modify PLS for handling the autocorrela-
tion data is to mimic the concept of the auto-regressive exogenous
time series model by forming the data matrix with the previous obser-
vations in each observation vector [Qin and McAvoy, 1992]. Ricker
[1988] applied the finite impulse response of the process variable
to PLS. However, the above methods need to substantially increase
the dimensions of the input and output matrices. Kaspar and Ray
[1992] proposed the standard PLS procedure should be used after
the dynamic component input data were filtered. The dynamic filter
is restricted to the first-order plus the dead time, computed by a prior

wr = arg Xr

T
Yr,||wr||= 1( )

wr

limmax

cr = 
Yr

T
tr

tr

T
tr

---------, ur = Yr

T
cr

br = 
ur

Ttr

tr

T
tr

--------

X = trwr
T

 + E = TW
T

 + E
r = 1

R

∑

Y = trcr
T

 + F  = TC
T

 + F
r = 1

R

∑

Fig. 1. Structure of the generalized MIMO DynPLS model. Sx and
Sy are the factors that scale the input and output variables,
respectively.
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knowledge of the process [Kaspar and Ray, 1992] or by a mini-
mum criterion of the prediction residuals [Kaspar and Ray, 1993].

In this research paper, ARX is integrated with PLS. This pro-
posed combinational method, referred to as Dynamic PLS (Dyn-
PLS), can extract the time-dependent relations in the measurements.
DynPLS consists of a cascade connection of a memoryless PLS
model and linear dynamic ARXs (Fig. 1). PLS with multiple inputs
and outputs can be modeled for multivariable static systems. The
dynamic characteristics of the system can often be inferred from
the analysis of a time series ARX model fitted to the observations
of the system. The MIMO model can be expressed as:

yh(k)=PLS(x(k))

(8)

where yh(k)=[y1
h(k) … yM

h(k)]T is the output vector from PLS, y(k)=
[y1(k) … yM(k)]T is the output vector, (k+1) is the one-step ahead
predictor, na indicates the number of output lag terms, and Ai=diag
(am, i)m=1, 2, …, M is a diagnoanl matrix. ys(k)=[y1

h(k−d1) … yM
h(k−dM)]T

and di is the dead time of yi
h. In Eq. (8), the current output value of

time series is expressed as a weighted sum of the past output values
plus the outputs from the PLS model. Thus, y(k+1) can be regressed
on the na previous values of y(k−i) and the past PLS output values,
ys(k).
3. Identification of DynPLS Model

From the dynamic data, the steady-state PLS and the linear dy-
namics should be identified simultaneously. This algorithm is based
on the standard alternating optimization procedure which works as
follows. It begins with the chosen parameters Ai, i=1, 2, …, na of
the linear dynamic model. Then the parameters (W and C) of PLS
can be estimated by using Eqs. (1)-(6),

(9)

where  and  can

be computed by substituting the observations into the ARX model
of Eq. (8). With the given PLS model, the input to the linear dy-
namic part can be computed as:

(10)

The parameters of the linear dynamic model, θm=[am, 1 am, 2 … am, nma
]T,

for the output m can be estimated by solving the following regres-
sion:

ym=Φmθm+ε (11)

where ym=[ym(dm+1)−ym
h(1) ym(dm+2)−ym

h(2) … ym(I)−ym
h(I−1−dm)]T

Φm=[ϕm(1) ϕm(2) … ϕm(I−1−dm)]
T
 and

ϕm(k)=[ym(dm) ym(dm−1) … ym(dm−nma)]
T

The least-squares estimate of the linear parameters is found through:

θm=[Φm
TΦm]−1Φm

Tym (12)

Then the PLS parameters are estimated again by using Eq. (9), and
the whole procedure is iteratively done until the parameter differ-
ence between two successive iterations is smaller than a predefined
threshold. Since it is conducted off-line, the whole algorithm must

be restarted when new input-output data become available. Note
that before the parameters of DynPLS model are identified, the dead
time and lag orders of the ARX model should be defined first. Se-
lecting these terms, however, is critical. Choosing the wrong lag
terms or the dead time used as regressors may have a disasterous
impact on some control applications. Lag terms that are too small
obviously imply that the essential dynamic would not be modelled,
but too large lag terms can also lead to difficulties in some of the
control design. To find the correct lag orders, a stepwise model-
building algorithm for estimating lag terms and dead time is em-
ployed [Chen and Yea, 2002]. Compared with Kaspar’s work [1993],
the proposed method shares the same feature in conducting the PLS
without increasing the dimensions of inputs or outputs. Also, the
dynamic model structure of the proposed method is so fexible that
it can meet the process dynamic behavior. Without the nonlinear
least squares method, the sequential training procedure identifies
PLS and ARX separately. Not only can it decrease the dimension
of the search space, but also substantially cut down the convergence
time in general.

MULTILOOP PID CONTROLLER DESIGN

The block diagram of the multiloop control system to be consid-
ered is shown in Fig. 2. The MIMO system model is decomposed
into several pairs of the input-output score. The multi-control loop
is then applied onto each pair to form a single loop control design
problem. A method of incorporating the adaptive PID control into
each independent control loop is developed.
1. Conventional PID Controller

The PID controller from the process variable y(t) to the control

ŷ k  + 1( ) = Aiy k  − i( ) + ys k( )
i = 0

na − 1

∑

ŷ

W C[ ]  = arg ||Y
h

 − PLS X( )||
W C,
limmin

Y
h

 = yh 1( ) yh 2( ) … yh I  − 1− d( ) d  = di{ }
W C,
limmax

ŷm k + 1( ) = am i, ym k − i( ) + ym
h k  − dm( )

i = 0

nma − 1

∑

Fig. 2. Implementation of the DynPLS model-based multiloop PID
controller design. Sx and Si are the factors that scale the in-
put and output variables, respectively. Sx

−1 and Sy
−1 are the

factors that rescale the input and output variables, respec-
tively.
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variable x(t) is

(13)

where xs is the bias value. e(t)=yset(t)−y(t) is the output error devi-
ated from the setpoint. kc, τi and τd are known as the proportional
gain, the integral time constant and derivative time constant, respec-
tively. A velocity form of the discrete PID controller whose inte-
gral action is computed by using the trapezoidal approximation can
be written as

(14)

The discrete form of the PID control is rearranged in the following
form:

∆x(k)=k0e(k)+k1e(k−1)+k2e(k−2)=eT(k)k(k) (15)

where

e(k)=[e(k) e(k−1) e(k−2)]T (16)

and

(17)

2. Multiloop PID Controllers of Decoupling Structure
The goal of the controller design for the MIMO system is to seek

control actions x(k) that can minimize the difference between the
process outputs y(k) and the desired outputs yset(k) at the next time
step; i.e., the process outputs can reach the desired values at the next
run time. Besides, from the operational point of view, the variance
controller output should be minimized in order to avoid excessive
control effort. The objective function of the MIMO system is ex-
pressed as

(18)

where µ is the weighting penalty parameter. kc, r, τi, r, τd, r are the PID
control parameters of the loop r. Here assume R control loops in
the reduced subspace are selected. Since e(k+1)=yset(k+1)−y(k+1),
the objective function involves a term in the future of the next time
step, namely y(k+1), which is not available at time k. Using Dyn-
PLS model (Eq. (8)), an one-step ahead output can be predicted,
that is, ,

(19)

Let , ys, set(k+1) and ys(k) can

be decomposed into the lower dimensional space ys,set(k+1)=

(k+1)cr and ys(k)= (k)cr. The above equation can be represented
as

(20)

This is the consequence of the Schwarz inequality. Letting Jr≡1/
2[(tr

set(k+1)−tr(k))2||cr||
2+µ(∆tr(k))2||pr

T||2], the objective function is de-
composed into R subobjective functions in the lower dimensional

subspace, J= . Only R score variables (tr, r=1, 2, … R) require

separate design compared with M process variables to be lumped
together without the decomposition. These multi-loop controllers,
like decentralized controllers, have a simpler structure and, accord-
ingly, fewer tuning parameters are needed than the fully cross-cou-
pled one. This decomposition structure for the multidimensional
control problem is a key component of the decoupling method.
3. Auto-Tuning PID Controller of Each Control Loop

After the objective function is decoupled into R objective func-
tions, the conventional SISO controller design technique can be di-
rectly applied to each score variable, respectively, in the decom-
posed space, because the MIMO system is decomposed by using
PLS, and the interactions which exist between control loops are also
eliminated. The only difference is that the process variables are con-
verted into the score variables in the subspace. Each subobjective
(Jr) is rearranged into

(21)

where ||cr||
2 and ||pr

T||2 of Eq. (20) with the penalty factor are lumped
into a coefficient λr. Here the incremental form of the PID control-
ler is used in each loop,

tr(k)=tr(k−1)+eT
sub, r(k)kr(k) (22)

where  and esub, r(k)=tr
set(k)−

tr(k)

Let the change of the tuning parameter at the sampling point k be
∆kr(k), the tuning parameters kr(k) at the sampling point k become

kr(k)=kr(k−1)+∆kr(k) (23)

Substituting Eqs. (22) and (23) into the objective function gives

(24)

where

Ar(k)=(I+λr)esub, r(k)eT
sub, r(k)

dr
T(k)=[−(tr

set(k)−tr(k))eT
sub, r(k)+(1+λr)kr

T(k−1)esub, r(k)eT
sub, r(k)]

(25)

When minimizing Jr with respect to ∆kr(k), we are seeking a set of
PID controller parameters of the loop r in the quadratic function of
this objective function. The gradient of Jr can be computed as

(26)

x t( ) = xs + kc e t( ) + 
1
τ i

--- e t( )dt + τd
de t( )

dt
-----------∫ 

 

∆x k( ) = x k( ) − x k − 1( ) = kc e k( ) − e k − 1( )( )[

+ 
∆t
2τ i

------ e k( )+ e k− 1( )( )+ 
τd

∆t
----- e k( ) − 2e k− 1( ) + e k− 2( )( )

k k( ) = k0 k1 k2[ ]
T

 = kc 1+ 
∆t
2τ i

------ + 
τd

∆t
----- 

   − kc 1− 
∆t
2τ i

------ + 
2τd

∆t
------- 

   
kcτd

∆t
---------

T

J = 
1
2
--- ||e k  + 1( )||2  + µ||∆x k( )||2[ ]

kc r, τ i r, τd r,, ,
r = 1 2 … R, , ,

lim
kc r, τ i r, τd r,, ,

r = 1 2 … R, , ,

limmin min

y k  + 1( ) ŷ k + 1( )≅

J= 
1
2
--- yset k+ 1( )− Aiy k− i( ) + ys k( )

i = 0

na − 1

∑
 
 
 

2

+ µ||∆x k( )||2
kc r, τ i r, τd r,, ,

r = 1 2 … R, , ,

lim
kc r, τ i r, τd r,, ,
r = 1 2 … R, , ,

limmin min

ys set, k  + 1( ) yset k + 1( ) − Aiy k− i( )
i = 0

na − 1

∑≡
tr

set

r = 1

R

∑
tr

r = 1

R

∑

J = 
1
2
---  tr

set k + 1( ) − tr k( )( )cr
r = 1

R

∑  

2

 + µ  ∆trkpr
T

r = 1

R

∑  

2

kc r, τi r, τd r,, ,
r = 1 2 … R, , ,

limmin

 
1
2
--- tr

set k + 1( ) − tr k( )( )2
||cr||

2
 + µ ∆tr k( )( )2||pr

T||
2

r = 1

R

∑
r = 1

R

∑
kc r, τ i r, τd r,, ,
r = 1 2 … R, , ,

lim≤ min

= J1 + J2 + ……+ JR[ ]
kc r, τ i r, τd r,, ,
r = 1 2 … R, , ,

limmin

= J1 + J2  + ……+ JR
kc R, τ i R, τd R,, ,

lim
kc 2, τ i 2, τd 2,, ,

lim
kc 1, τ i 1, τd 1,, ,

lim[ ]min min min

Jr
r = 1

R

∑

Jr = 

1
2
--- tr

set k + 1( ) − tr k( )( )2
 + λr ∆tr k( )( )2[ ]

kc r, τ i r, τd r,, ,
lim

kc r, τ i r, τd r,, ,
limmin min

esub r, k( )= esub r, k( ) esub r, k − 1( ) esub r, k− 2( )

Jr = 
1
2
---∆kr

T k( )Ar k( )∆kr k( ) + dr

T
k( )∆kr k( ) + cr

cr = 
1
2
--- tr

set k( ) − tr k( )( )2
 − tr

set k( ) − tr k( )( ) eset r,
T k( )kr k − 1( )[ ]

+ 
1
2
--- eset r,

T k( )kr k  − 1( )( )2
 + 

λ r

2
----kr

T
k − 1( )esub r, k( ) esub r,

T k( )kr k  − 1( )[ ]

∇ Jr ∆kr k( )( ) = 
∂Jr ∆kr k( )( )

∂∆kr k( )
--------------------------- = Ar k( )∆kr k( ) + dr k( )
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The optimal point will occur when the gradient is equal to zero. Thus,
the required changes of the control parameters are

∆kr(k)=−Ar
−1

(k)dr(k) (27)

Using Eq. (17), the corresponding PID control parameters of the
controller loop r are

(28)

Each PID controller parameter can be computed directly by using
Eqs. (27) and (28) without any difficulty, but physically it is not suit-
able because the manipulated inputs and controlled outputs based on
the computed controller parameters may be out of the operating ranges.
Typically, the constraints are defined at the minimum and maxi-
mum of x and y, xmin= , xmax= ,
ymin= , and ymax= . Thus, the con-
straints placed on the input and output variables x and y at each sam-
pling time are

xmin≤x(k)≤xmax

ymin≤y(k)≤ymax (29)

However, these constraint relationships cannot be transformed onto
the latent space because the sub-optimum may occur [Lakshminaray-
nan et al., 1997]. In order to implement the decomposition strategy, a
quadratic function (Eq. (21)) is still solved for each control loop, but
the manipulated variables mapped back from the latent space and
the corresponding controlled variables predicted from the DynPLS
model should satisfy the constraints (Eq. (29)). If the estimated manip-
ulated variables exceed the bounds, the bound values of the manip-
ulated variables would be applied. This way, the manipulated variables
and the controlled variables would be located in the feasible input
constraint regions and the output constraint regions, respectively.

ILLUSTRATIVE EXAMPLES

Two case studies are used to illustrate the advantages of the pro-
posed identification and PID control design methodology. They will
be discussed separately in the sub-sections as follows.
1. Example 1: Nonsquare System

Processes with unequal number of inputs and outputs are fre-
quently encountered in industrial processes. For the convenience
of the control design, they are often squared by adding or deleting
the appropriate number of inputs or outputs from the process to be
controlled [Reeves and Arkun, 1989]. Here a system with four in-
puts and three outputs is used to demonstrate the performance of
the proposed technique. This system is formulated as follows [Wolov-
ich and Flab, 1969]:

(30)

It is a typical MIMO process with interaction. First, the aim is to
build up the DynPLS model based on the data. The identification
data set contains 1,000 samples obtained at 0.25 sampling time units.
Based on the stepwise model-building procedure, the best final pre-
dicted dynamic model is depicted as:

(31)

kc r, k( ) = − k1 r, k( ) + 2k2 r, k( )[ ]

τ i r, k( ) = 
− k1 r, k( ) + 2k2 r, k( )[ ]∆ t

k0 r, k( ) + k1 r, k( ) + k2 r, k( )
------------------------------------------------------

τd r, k( ) = 
− k2 r, k( )∆t

k1 r, k( ) + 2k2 r, k( )
-------------------------------------

x1
min x2

min … xN
min[ ] x1

max x2
max … xN

max[ ]
y1

min y2
min … yM

min[ ] y1
max y2

max … yM
max[ ]

G s( ) = 

3 s + 3( ) s + 5( )
s + 1( ) s + 2( ) s + 4( )

--------------------------------------------  
6 s + 1( )

s + 2( ) s + 4( )
-----------------------------

2
s + 3( ) s + 5( )

-----------------------------  
1

s + 1
----------

2 s2
 + 7s  + 18( )

s + 1( ) s + 3( ) s + 5( )
--------------------------------------------  

− 2s
s + 1( ) s + 3( )

-----------------------------

2s + 7
s + 3( ) s + 4( )

-----------------------------  
2s + 5

s + 2( ) s + 3( )
-----------------------------

2 s + 5( )
s + 1( ) s + 2( ) s + 3( )

--------------------------------------------  
8 s + 2( )

s + 1( ) s + 3( ) s + 5( )
--------------------------------------------

1
s + 3
----------  

2 5s2
 + 27s + 34( )

s + 1( ) s + 3( ) s + 5( )
--------------------------------------------

y1
h k( )

y2
h k( )

y3
h k( )

 = PLS

x1 k( )
x2 k( )
x3 k( )
x4 k( ) 

 
 
 
 
 

y1 k + 1( )
y2 k + 1( )
y3 k + 1( )

 = 

0.41y1 k( ) − 0.01y1 k − 1( )
0.61y2 k( ) − 0.22y2 k − 1( )
0.23y3 k( ) + 0.04y3 k − 1( )

 + 

y1
h k( )

y2
h k( )

y3
h k( )

Fig. 3. Validation results of the DynPLS model in Example 1: (a)
y1, y2 and y3 (b) u1, u2, u3 and u4.
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Another 1,000 sets of data which does not come from the training
sets are produced in a similar way for validation. The validation
results in Fig. 3 show this model closely follows the actual process
behavior.

With the built DynPLS model, the setpoint changes can be traced
by the on-line updated algorithm that is in control of the process.
Two cases with all four inputs and only three inputs are compared.
With the proposed control design strategy, this indicates that the
proposed multiloop updated algorithm is able to trace the setpoint
signal in the MIMO process. Fig. 4 shows the response of the closed-
loop system to the different setpoint changes in the reference signal.
It is observed that the ouputs in all cases can meet their steady-state
values except when the three inputs (u1, u2 and u4) are selected. Fig.
5 shows the updated PID control parameters at each sampling point
derived from the system model when all inputs are selected. Table

1 lists the control cost ( ) and the sum square of the error

(SSE) of the controlled variables deviated from the set points for
different inputs. The costs of the control design and SSE with all
four inputs for the nonsquare system are significantly less than those
with another three inputs for the square system.

The percentage of variance captured by each PLS component is
listed in Table 2. It is observed that three principal components cap-
ture over 90% of the variance in the relationships of the MIMO pro-

cess, which suggests that the process variables are fairly well corre-
lated between inputs and outputs. Here different numbers of con-
trol loops based on the number of components are selected to show
the control performance (Fig. 6). Since the first component accounts
for almost 37% of all the total input variations and 80% of all the
total output variations, the control loop based on the first compo-
nent constitutes the minimum control performance that still barely
meets our expectation. Fig. 6(a) shows that the offset occurs due to
the model error of the PLS model with only one component even
if the controller with an integral mode is used and the response of
the controlled score variable is close to the desired setpoint score
variable (Fig.7). With adding the second control loop with the second
component, the control performance has been improved a little, but
the offset of the output y2 still exists (Fig. 6(b)). When three control
loops based on the first three components are selected, the corre-
sponding control performance is further improved (Fig. 6(c)). How-
ever, the improvement is not very significant when the fourth com-
ponent is added, because the first three components already account
for 92% of all the total input variations and 98% of all the total out-
put variations. Therefore, fewer control loops based on the contri-
butions of only a few components in the subspace can be used with-
out a substantial loss of the control performance. The decision de-
pends on how much information (of unaccounted variance) can be
removed. Several suggested rules for selecting the number of com-

ui
2 k( )

i
∑

k
∑

Fig. 4. Control performance of the setpoint change in Example 1 with different inputs: (a) all inputs, (b) u1(k), u2(k) and u3(k), (c) u1(k),
u2(k) and u4(k), (d) u2(k), u3(k) and u4(k).
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ponents were discussed in the literature [Zwick and Velicer, 1986;
Eastment and Krzanowski, 1982].
2. Example 2: Nonlinear pH Neutralization System

A pH neutralization process [Lakshminaraynan et al., 1997; Nahas
et al., 1992], which has three input streams and one outlet stream, is
considered. The input streams include acid (HNO3), buffer (NaHCO3)
and base (NaOH) streams. The process model consists of two reac-
tion invariants, three nonlinear ordinary equations and one nonlin-
ear algebraic equation, and the input streams are subject to con-
straints.

Charge balance

(32)

Carbonate ion balance

(33)

(34)

(35)

(36)

(37)

subject to

0≤q1(k)≤30, 0≤q2(k)≤30 (38)

Wa H+[ ]  − OH−[ ]  − HCO3
−[ ]  − 2 CO3

=[ ]≡

Wb H2CO3[ ]  + HCO3
−[ ]  + CO3

=[ ]≡

dh
dt
------ = 

1
A
---- q1+ q2 + q3 − Cvh

0.5
( )

dWa4

dt
------------ = 

1
Ah
------- Wa1 − Wa4( )q1 + Wa2 − Wa4( )q2  + Wa3 − Wa4( )q3[ ]

dWb4

dt
------------ = 

1
Ah
------- Wb1 − Wb4( )q1 + Wb2 − Wb4( )q2  + Wb3 − Wb4( )q3[ ]

Wa4  + 1014-pH
 + Wb4

1+ 2 10pH-pK2×
1+ 10pK1-pH

 + 10pH-pK2

--------------------------------------------- − 10-pH
 = 0

Fig. 5. The multiloop PID controller parameters of the setpoint changes in Example 1: when all inputs are used: (a) loop 1; (b) loop 2;
(b) loop 3; (b) loop 4.

Table 1. Total cost of different inputs in Example 1

Control inputs Input cost SSE

All four inputs 0424.16 27.41
u1, u2 and u3 1756.90 39.05
u1, u2 and u4 6902.10 72.23
u2, u3 and u4 2176.00 47.72

Table 2. Percentage of variance captured by each PLS component
in Example 1

Component
Percent variance captured by each PLS component

Xblock Total Yblock Total

1
2
3
4

37.04
34.63
20.11
08.23

037.04
071.68
091.78
100.00

79.76
14.29
03.95
01.87

79.76
94.07
98.01
99.87
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In the above equations, h is the liquid level, Wa4 and Wb4 are the
reaction invariants of the effluent stream, and q1, q2 and q3 are the
acid, buffer and base flow rates, respectively. The definition of the
other parameters and the nominal operation conditions are listed in
Table 3. The objective is to control the pH value and level h in the

tank by manipulating the base (q3) and acid flow rate (q1).
As we know, any linear model has a limited range of validity for

the nonlinear process. One way to solve this problem is to use the
union of the different local linear models to approximate the desired
process. In this study, based on the two desired operating regions
(around (i) pH=7.0, h=14.0 and (ii) pH=8.5 , h=12.0), the decom-
sposition of the modeling problem into two DynPLS models is em-
ployed here. Fig. 8 shows the two different local areas and the shaded
area covering all the possible steady-state region under the differ-
ent inputs q1 and q3. Before the proposed control statrategy is im-
plemented, two DynPLS models from two open-loop simulation
data of the pH system need to be established for these desired op-
erating regions. In this case, the training data set is generated from
pseudo-random variation of inputs q1 and q3. The duration of each

Fig. 6. Control performance of the setpoint change in Example 1 with different number of components: (a) the first one component, (b)
the fist two components, (c) the first three components and (d) all components.

Fig. 7. Projection of the controlled variables in Fig. 6(a) onto the
latent space.

Table 3. Simulation parameters in Example 2

A=207 cm2 Wb3=5×10−5 M
Cv=8.75 ml cm−1 s−1 q1=16.6 ml s−1

pK1=6.35 q2=0.55 ml s−1

pK2=10.25 q3=15.6 ml min−1

Wa1=3×10−3 M [Acid]=0.003 M HNO3

Wa2=−3×10−2 M [Buffer]=0.03 M NaHCO3

Wa3=−3.05×10−3 M [Base]=0.003 M NaOH
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variation interval is set to be 20 minutes. The corresponding changes
of pH and h are around these two desired operating regions. The
two DynPLS models based on the stepwise model-building algo-
rithm are:

Model I: (around pH=7.0, h=14)

(39)

Model II: (around pH=8.5, h=12)

(40)

The final optimal combination of these two local models is defined
by

(41)

where wi is the relative validity of each local model and 

ρi is the validity function,

(42)

with pH1=7.0, h1=14.0, pH2=8.5, h2=12.0, σ 1
pH=σ 2

pH=1.0 and σ1
h=

σ 2
h=1.0. Another data set generated by a similar method is used to

verify the prediction capability of the DynPLS models. Fig. 9 shows
the approximation capability of the combination models for these
testing data. The predicted result exactly follows the acutal process
behavior.

In the first testing condition, the control strategy shows the set-
point changes in both the level and the pH value. In the first time
period, the values of h and pH are kept at 14 and 7, respectively.
At time 100 the setpoints are shifted to the pH value of 8.5, and h
value of 12; at time 300 the setpoints are shifted to the pH value of

6.5, and h value of 16; Fig. 10 demonstrates the setpoint tracking
ability of the proposed on-line updated algorithm. The control per-
formance of the combinational DynPLS models is satisfied. QDMC
and a nonlinear neural network model predictive control (NNMPC)
are also tested for making a fair comparison. QDMC does not have
good results because the test region is not covered by the trained
model (around pH=8.5 and h=12.0). The manipulated inputs and
the corresponding controlled outputs have fairly large variations
even if the appropriate value of the Lagrange multiplier constant is
included in QDMC in order to have an invertible dynamic matrix
and reduce the larger variation of inputs. On the other hand, the de-
composition strategy of PLS can remove the components with fewer
contributions. The inputs would not have much larger fluctuation
even if at time 500 the setpoints are shifted to the new area around
the pH value of 5, and h value of 10, which are not covered in the
operation regions of the trained model. Furthermore, the controller
design of each loop can be directly computed without the invertible
problem. When the control performances of NNMPC and DynPLS
are compared, although NNMPC is a little better than DynPLS, the
former is based on nonlinear optimization and the latter is only used

ŷ1 k  + 1( ) = 0.925y1 k( ) + y1
h k − 2( )

ŷ2 k  + 1( ) = 1.7032y2 k( ) − 0.7236y2 k − 1( )
− 0.0080y2 k − 2( ) + y2

h k − 4( )

ŷ1 k  + 1( ) = 1.1066y1 k( ) − 0.2818y1 k − 1( ) + 0.0121y1 k  − 2( )
− 0.0111y1 k − 3( ) + y1

h k( )
ŷ2 k  + 1( ) = 1.6773y2 k( ) − 0.6817y2 k − 1( )

− 0.0117y2 k − 1( ) + y2
h k − 3( )

y k( ) = wiyi k( )
i = 1

2

∑

wi = 
ρi

ρii∑
-----------  ⋅

ρi
 = − 

1
2
--- pH − pH

i

σpH
i

--------------------- 
 

 
  − 

1
2
--- h − h

i

σh
i

------------ 
 

2

 
 exp⋅exp

Fig. 8. All the possible steady-state conditions of the pH neutral-
ization system represented by the shaded region. Two el-
lipses indicated by the dashed lines are the local regions with
three standard deviations of h and pH.

Fig. 9. Validation results of the combinational DynPLS model in
Example 2.
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to solve the quadratic objection (Eq. (24)) for each control loop (Eq.
(27)). When the setpoints are shifted to the new area after the time
point 500, as in the previous discussion, the responses of NNMPC
and DynPLS with the modeling error result in the performance de-
terioration.

Actually, a process with noise always exists. Here the measured h
with noise N(0, 0.32) and pH with N(0, 0.22) are tested. Although the
control outputs can follow the setpoints in this situation, they are
around the desired setpoints (Fig. 11). The corresponding variations
of the controlled variables exist due to the noise measurements to a
large extent. Here the control design based on QDMC and NNMPC
are also included. The performances of the comparisons of these
control designs for the process with noise are the same as those for
the process without noise.

In addition to setpoint tracking, the buffer flow rate disturbance
is also an important control object in the pH neutralization system.

Fig. 12 shows the rejection of buffer disturbance ranges from 0.6
ml/s to 0.2 ml/s at time point 100 and from 0.2 ml/s to 1.5 ml/s at
time point 350. Because of the proposed control structure with the
integration model, the control performance shows that the proposed
DynPLS has a good ability in buffer disturbance rejection without
any large offset when compared with the other two methods.

CONCLUSION

In this paper an SISO PID controller design strategy is devel-
oped for the design of the MIMO controller system as a substitute
for the traditional decoupling design. The proposed method explores
many aspects of the control design of the MIMO system, such as

Fig. 10. Control performance of the setpoint changes (solid line)
based on QDMC (dashdot line), NNMPC (dotted line) and
proposed model (dashed line) in Example 2: (a) and h; (b)
q1 and q3.

Fig. 11. Control performance of the setpoint changes (solid line)
based on QDMC (dashdot line), NNMPC (dotted line) and
proposed model (dashed line) in Example 2 when the mea-
surements have noises.

Fig. 12. Control performance of disturbance changes based on
QDMC (dashdot line), NNMPC (dotted line) and proposed
model (dashed line) in Example 2.
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the conceptual decomposition framework in the reduced subspace,
the MIMO model development, the sequential training procedures,
the optimal control design and applications. This design procedure
may lead to a wider range of applications for the multiloop con-
troller structure. The proposed algorithm has the following advan-
tages: (i) It is simple to identify DynPLS since it is not necessary to
identify the MIMO system by a sequence of relay identification.
(ii) The coupling effect in the MIMO system can be overcome effec-
tively. The PLS structure can be decomposed into several pairs of
inputs and outputs, so the number of control loops can be selected
based on the variation captured by each pair. (iii) Unlike the sequen-
tial tuning of the multiple control loop for the iterative design in
each control loop, the adaptive tuning PID controller strategy in
the SISO system can be implemented directly and simultaneously
onto each loop of the multiloop control design in the MIMO system
under the decomposition structure of PLS. The potential of the pro-
posed technique for prediction and process control is demonstrated
by means of simulation studies. Modeling and control performed
on the large-scale problems and the real lab-scale experiments will
be included in our next research.
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