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Abstract—The goa of this paper is to identify and control multi-input multi-output (MIMO) processes by means of
the dynamic partia least squares (PLS) model, which consists of a memoryless PLS model connected in series with
linear dynamic models. Unlike the traditiona decoupling MIMO process, the dynamic PLS modd can decompose the
MIMO process into a multiloop control system in a reduced subspace. Without the decoupler design, the optima tuning
multiloop PID controller based on the concept of general minimum variance and the congtrained criteria can be directly
and separately applied to each control loop under the proposed PLS modeling structure. Severa potential applica

tions using this technique are demonstrated.

Key words: Partid Least Squares, Multiloop, PID Controllers, Adaptive Control, Multivariable Process

INTRODUCTION

Controlled processesin nearly dl chemicd indudtries frequently
encounter the nead for more than one varigble to be controlled. They
are known as multivaridble or multi-input multi-output (MIMO)
processss. The contral of multivariable sysems is not dways an
easy task dueto its complex and interactive nature. Most of the auto-
maic tuning methods are intended for single-input single-output
(S1S0) processes. Few of them are intended for MIMO processes
[Kashiwagi and Li, 2004; PAmor et d., 1995; Oh and Yeo, 1995;
Zhuang and Atherton, 1994] because S SO is easy to undersand
and reedily available in hardware and software. A critical gep in
the multiloop dynamic control design of the dynamic MIMO isthe
development of a suitable modd thet pairs the contral loops. Multi-
variable PID controllers were discussed in some previous research.
The biggest Iog modulustuning (BLT) method [Luyben, 1986] was
designed for each loop, respectively, depending on the tradeoff be-
tween gability and performance of the sysem. The controller pa-
rameters would be properly adjusted by a detuning factor to main-
tain the gability. The internd mode control [Garcia and Morari,
1982] gpproach was more amenable, but it required full knowledge
of the process. Recently, a sequentia design was used for multi-
loop PID controller sysems [Shiu and Huang, 1998]. It usudly took
agreat ded of time to identify the multiloop system and design the
multi Sngle-loop controller in asequentia procedure.

The development of chemometric techniques has spurred a tor-
rent of research in multivariable processes. Thase techniques can
be usad to extract the state of the system via gpplications of math-
ematicd and datistical methods from the stored data. Severd chemo-
meric techniques were proposed, like principal component andy-
dsand patid leest squares (PLS). They have received condderable
attention in the field of chemica process problems and have been
gpplied to system monitoring and diagnosis [Han et d., 2003; Chen
and Yen, 2003; Kourti and MacGregor, 1996; Ku et d., 1995]. Still,
it was rardly on the control problem. All of these works showed
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that only afew principa components could capture most of the char-
acterigtics of the sysem pattern in a multivariable process behav-
ior. They dso could successfully tackle operationa data andyss.
Recently, dynamic PLS for control sysem design was addressed
[Kagpar and Ray, 1992, 1993)]. Dynamic PL S incorporated a dynam-
ic transformation into the standard PLS mode. Then the synthesis
method of controller design was used to tune the controller param-
eters on each of the control loops. Another dynamic PLS gpproach,
aso known as a projection-based dynamic modd, was proposed
[Lakshminaraynan et d., 1997]. A PLS outer modd was first con-
gructed. The dynamic reaionship between the input and the output
scores was built on the inner modd. However, the control objec-
tive was till lumped when model predictive control was used. Al-
though the control performances of the above methods were satis-
factory, the adaptive control design based on the PL S related mod-
els has not been developed.

Inthe control design, it might be difficult to ded with atime vary-
ing chemical process. To improve the control performance, severd
schemes of sf-tuning PID controllers were proposed in the padt.
Wittenmark [1979] developed the control structure with the PID
agorithm caculated via pole placement design. The method was
limited in the order of the contralled process. The sdf-tuning Pl or
PID agorithms were automaticaly derived from the dynamic of
the controlled processes [Gawthrop, 1986]. An dternaive sdif-tun-
ing PID controller was built based on the generdized minimum var-
iance control [Cameron and Seborg, 1983]. The control Sructure
was oriented to have aPID structure. The contraller parameterswere
obtained by using a parameter estimation scheme. The PID adap-
tive agorithm with the combination of traditiond control design
methods (Ziegler-Nichols method and pole placement design) and
a recurgve identification procedure was dso developed [Bohim
Bobd and Prokap, 1999; Banyasz and Keviczky, 1993]. Other forms
of sdf-tuning PID can be found in literature [Radke and 1sermann,
1987; Ortega and Kdly, 1984; Proudfoot & d., 1983]. However,
the above sdlf-tuning adaptive control approachesare dl ussful only
for the SO system.

To improve the multiloop control performance, an adaptive mul-
tiloop PID dgorithm is proposad. It combines the generd minimum
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Fig. 1. Sructure of the generalized MIMO DynPLSmodd. S, and
S arethefactorsthat scalethe input and output variables,
respectively.

vaiance (GMV) with the decomposition cheracterigtic of the dynam+-
ic PLS gructure. Dynamic PLS condgts of the cascade connection
of amemoryless PLS gain matrix followed by linear dynamic mod-
ds With the dynamic PLS modd, the PID dgorithm can be imple-
mented directly onto each control loop without any modification.

STRUCTURE OF DYNAMIC PLS MODEL

With M controlled and N manipulated variables, an MIMO pro-
cess whose number of inputs and outputs may be unequal is given
in Fg. 1. Thereisoften coupling in this process; that is, alarge dis-
turbance from other loops occurs whenever the manipulated vari-
able of one loop changes. This interaction may cause oscillaion
and even indahility. In this section, the PLS technique is used to
diminate the interaction of the MIMO system. Firdt, a brief over-
view of themultivariate PL S statistica technique is presented. Then
the controlled and manipulated variables can be trandformed into a
amdler informative st via a st of linear functions which model
the combinationd relationship between the controlled variables and
latent controlled variables, and between the manipulated variables
and latent manipulated variables respectively. Findly, the gatic PLS
is extended to dynamic PLS to handle the process measurements
with the dynamic behavior.

1. Partial Least Squares

PLS regression derived from the dassicd lineer regresson is often
used to predict properties of processes basad on variables only in-
directly related to the properties. The given process data are subdi-
vided into two blocks, a dependent block (Y) and an independent
block (X). Y block with atwo-way aray (IxM) summarizesthe |
samplesand the M find quality variables. X block with atwo-way
aray (IxN) organizes process operating N varigbles PLS is used
to extract latent variables. The latent variables explain the best cor-
relaion between the product qudity block (Y) and the process data
block (X).

The stlandard PLS regresson [Hoskuldsson, 1988] relies on de-
composing the dependent block (Y) and the independent block (X)
into asum of rank one component matrices. Before PLS is gpplied,
each measurement variable that centers and scales the variance to
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unit one is typicaly gpplied; thiswill put dl variables on an equd
beds Initidly, let X=X, Y=Y and r=0. Find avector (or component)
(w,) whichis corrdated with Y, while describing alarge amount of
thevaiaionin X.. It can beformulated as

w, =argmax (XY . Jw | =1) @

Then the component is subtracted from X, and Y,

Xr=Xr— 1~ trWrT (2)
Yr:er 1 h’trc;r (3)
and
t=XW, @
T
¢ =%b U=yl ®

rir

wherew, and ¢ aretheloadings of X, and Y,, respectively. The score
(t,) isthe projection of X, into the direction w,. The score (u,) isthe
projection of Y." into the direction ¢. b, is the regresson coeffi-
cdentrdaedtot, and u,,

T
br =UTr_tr
tt,

©
Egs (2) and (3) are used to remove the variance associated with
the dreedy cdculated r-th directions of w, and ¢, in the variance of
process variables and qudity variables, respectively. Then setr=r+1
and repest the above procedures (Egs (1)-(6)) urtil the description
of Y convergenceis properly gotten. Findly, the matrices Y and X
are separately decomposad into the summation of the product of
score vectorst and loading vectorsw and ¢ plus some residud ma:
trix E and F, repectively:

R
X =Zt,w,T+E =TW' +E
R
Y =Zt,cI+F =TC'+F ™

where R is the number of principal components retained in PLS.
Dueto its Smplicity and easy interpretation, the gpplications of this
gpproach can be found in an abundant literature. However, the PLS
modd only deds with gatic rather than dynamic rdaionships. This
means that it isin the form of atrace of processng without mem-
ory in the previous time observations. It will limit itsuseto atypicd
off-line amogphere since it does not comply with the dynamic con-
trolled process that contains the serid correlaion among the pro-
cessvaiables
2. Dynamic PLS Modd

A smple method to modify PLS for handling the autocorrela-
tion datais to mimic the concept of the auto-regressive exogenous
time sriesmodd by forming the datamatrix with the previous obsar-
vaionsin each obsarvation vector [Qin and McAvay, 1992]. Ricker
[1988] applied the finite impulse response of the process varigble
to PLS. However, the above methods need to subgtartialy increase
the dimensions of the input and output matrices. Kaspar and Ray
[1992] proposed the standard PLS procedure should be used after
the dynamic component input datawere filtered. The dynamic filter
is regtricted to the firg-order plus the deed time, computed by aprior
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knowledge of the process [Kaspar and Ray, 1992] or by a mini-
mum criterion of the prediction residuds [Kaspar and Ray, 1993].

In this research paper, ARX is integrated with PLS. This pro-
posed combinationd method, referred to as Dynamic PLS (Dyn-
PLS), can extract the time-dependent relationsin the measurements.
DynPLS congds of a cascade connection of a memoryless PLS
modd and linear dynamic ARXs (Fig. 1). PLS with multiple inputs
and outputs can be modded for multivaridble datic systems. The
dynamic characterigtics of the sysem can often be inferred from
the analyss of atime series ARX modd fitted to the observations
of the system. The MIMO modd can be expressed as.

Y'()=PLSX(K))

n,=1

Ik +1)= 5 Ay(ki) +y(K) ®

where y'(K)=[y"(K) ... y/(K)]" is the output vector from PLS, y(K)=
[ya(K) ... yu(K)]" is the output vector, §(k+1) is the one-step ahead
predictor, n, indicates the number of output lag terms, and A;=diag
@i .... 0 1S @ diagnoan matrix. y()=[yi(k—d) ... yik—d)]’
and d isthe dead time of y!. In Eq. (8), the current output value of
time seriesis expressed as aweighted sum of the past output vaues
plusthe outputs from the PLS modd. Thus, y(k+1) can be regressed
onthe n, previous vaues of y(k—i) and the past PL.S output vaues,
yiK).
3. Identification of DynPLS Modé

From the dynamic data, the steady-gate PLS and the linear dy-
namics should be identified Smultaneoudy. Thisadgorithm is basad
on the standard dternating optimization procedure which works as
follows. It begins with the chosen parameters A, i=1, 2, ..., n, of
the linear dynamic modd . Then the parameters (W and C) of PLS
can be estimated by usng Egs. (1)-(6),

[W C] =argmin]Y" -PLS(X)] ©

where Y"=[y"(1) y'(2) ... y"(1 ~1—d) | and d =max{d} can
be computed by subgtituting the observationsinto the ARX modd
of Eq. (8). With the given PLS modd, the input to the linear dy-
namic part can be computed as.

KD = 3 anyalk =) +yi(k ) (19

The parameters of the linear dynamic moddl, 6,81 8y - -+ Bnn. ] »
for the output m can be esimated by solving the following regres-
son:

Vo=@ O+€ ()

wherey, =[y(d,+1)-YRD) Yot =YiD) ... Yul)-yrl=1-d)]"
D= 0u(D) 92 ... du(1-1-d)] ad
O(=Tynl0) Vel = D) ... Yul )]

The leagt-guares estimate of thelinear parametersisfound through:
0.=[0.@] DY, (12

Then the PL S parameters are edimated again by using Eq. (9), and
the whole procedure is iteratively done until the parameter differ-
ence between two successive iterationsis smaler than apredefined
threshold. Since it is conducted off-line, the whole dgorithm must

be restarted when new input-output data become available. Note
that before the parameters of DynPLS moddl are idertified, the dead
time and lag orders of the ARX modd should be defined first. Se-
lecting these terms, however, is critical. Choosing the wrong lag
terms or the dead time used as regressors may have a disasterous
impact on some control goplications. Lag terms that are too samdl
obvioudy imply that the essentid dynamic would not be modelled,
but too large lag terms can a0 lead to difficulties in some of the
control design. To find the correct lag orders, a Sepwise modd-
building dgorithm for esimating lag terms and deed time is em-
ployed [Chen and Yea, 2002]. Compared with Kagpar’swork [1993],
the proposed method shares the same fegture in conducting the PLS
without increesing the dimendons of inputs or outputs. Also, the
dynamic modd gtructure of the proposed method is so fexible thet
it can meet the process dynamic behavior. Without the nonlineer
leest squares method, the sequentid training procedure identifies
PLS and ARX separately. Not only can it decresse the dimension
of the search goace, but dso substantialy cut down the convergence
timein generd.

MULTILOOP PID CONTROLLER DESIGN

Theblock diagram of the multiloop control system to be consid-
ered is shown in FHg. 2. The MIMO system modd is decompassd
into severd pairs of the input-output score. The multi-control loop
is then applied onto each pair to form a sngle loop control design
problem. A method of incorporating the adaptive PID contral into
each independent control loop is devel oped.

1. Conventional PID Controller
The PID controller from the process varigble y(t) to the control
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Fig. 2. Implementation of the DynPL S modd-bassd multiloop PID
controller design. S, and S arethefactorsthat scalethein-
put and output variables respectively. S, and S;' are the
factorsthat rescale the input and output variables, respec-
tively.
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vaiadlex(t) is

dt g

where x; is the bias vaue. g(t)=y™(t)—y(t) is the output error devi-
ated from the setpoint. k., T, and 1, are known as the proportiona
gain, theintegra time congtant and derivative time condant, respec-
tively. A velocity form of the discrete PID controller whose inte-
grad action is computed by usng the trgpezoida gpproximetion can
bewritten as

(k) =x() ~x(k =) =k[(e(k) ~e(k ~1)
+ (el +e(k—1) + 24(e() ~2e(k=1) +ek—2)) | 14)

X(0) =, B0 * etk + I (13

The discrete form of the PID contral is rearranged in the following
form:

Dx(K)=ke(K)+Hke(k— 1) +ke(k—2)=€'(k)k (K) (19
where

e(k)=[e(k) e(k—1) ek-2)]" (19
and

At | T kT,
k(k)=[kok1k2]T=[kc%+2T + L0 Eﬁr ot ﬁgmﬂ a

2. Multiloop PID Controllers of Decoupling Structure

Thegod of the controller design for the MIMO systemisto saek
control actions x(k) that can minimize the difference between the
process outputs y(k) and the desired outputs y*(K) &t the next time
dep; i.e, the process outputs can reech the desired vaues @ the next
run time. Besides, from the operationd point of view, the variance
controller output should be minimized in order to avoid excessive
contral effort. The objective function of the MIMO sysem is ex-
pressed as

kcmln J—% min [Je(k +DF +ulax()]] (18)

r=12,. R

where 1 isthe weighting pendty parameter. k., 7, 7, aethe PID
control parameters of the loop r. Here assume R control loops in
the reduced subspace are Hected. Since gk+1)=y®(k+1)—y(k+1),
the objective function involves aterm in the future of the next time
gep, namdy y(k+1), which is not available a time k. Using Dyn-
PLS modd (Eg. (8)), an one-step ahead output can be predicted,
thatis, y(k +1) Oy (k +1),

Y (k+1) - %ZAiy(k—i) +y5(k%

r12 R

2

_1

min J== min
Ker Tipn T erd
r=12,..R r=1,2,...,R

+plAx (k) IIZ]

19

Lety**(k +1)=y*(k +1) - z Ay(k—i), y=(k+1) andys(k) can

be decomposed into the lower dimensiona space yH(k+1)= Zt*‘

S:l)q ad YS(")-,Z“ (K)G. The above equation can be represented
o }

Ko T Tar
rlZR

R
;At,kp#

3 (kD) (k)

J=% min {
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=[ min J+ min L+...... + min J (20
Kon T Tax Koo T2 T2

This is the consequence of the Schwarz inequdity. Letting J=1/
2 (k+ -t (Yl F+LALK))lIR{IF, the objective function is de-
composed into R subobjective functions in the lower dimensond
wbspaoeJ:ZJ Only R scorevariables (t, r=1, 2, ... R) reguire
separate design compared with M process varigbles to be lumped
together without the decompaosition. These multi-loop controllers,
like decentrdized contrallers, have a smpler sructure and, accord-
ingly, fewer tuning parameters are nesded than the fully cross-cou
pled one This decompostion dructure for the multidimensiond
control problem isakey component of the decoupling method.
3. Auto-Tuning PID Controller of Each Control Loop
After the objective function is decoupled into R objective func-
tions, the conventiona SISO controller design technique can be di-
rectly gpplied to each score varidble, respectivey, in the decom-
posed space, because the MIMO system is decomposed by using
PLS, and theinteractionswhich exist between control loops aredso
diminated. The only difference isthat the process variables are con-
verted into the score variables in the subspace. Each subobjective
(J) isrearranged into

_min 3=3 min [((k+1) ~4(0)* +A(4 ()] @

where ||c|f and [|p/|F of Eqg. (20) with the pendlty factor are lumped
into a coefficient A.. Here the incremental form of the PID control-
ler isused in each loop,

t(k)=t.(k—1)+€L, (K)k (k) 7]

Vme esubr(k) :Lesub,r(k) esub,r(k _l) esub,r(k_Z)J ad esjbr(k)zﬁa(k)_
t(K)
Let the change of the tuning parameter & the sampling point k be
Ak, (K), the tuning parametersk, (k) a the sampling point k become
k(K)=k (k- 1)+Ak (k) €

Subdituting Egs. (22) and (23) into the objective function gives
3 =30 0A (A, (K) +d/ (9K () +¢ (249

where

AR)=(1+A)es (€5, (K)
A/ (K=~ (7 ()~ t (KDL (K)+ 1+ AT (K= D ()L ()]

C :l(t?et(k) ~t(K))" =(£(K) ~t.(K)) [ €%, (K) K, (K =1)]

+3 (esen(k)k(k 1))2’f/\'l<T(k ~1)ewn (K)[€5, (KK (k ~1)] (25)

When minimizing J with respect to Ak, (K), we are seeking a set of
PID controller parameters of the loap r in the quadratic function of
this objective function. The gradient of J. can be computed as

03(Bk,(K)) _

03 (Ak.(k)) = k.(K)

A(K)Ak, (k) +d.(k) (26)
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The optima point will oocur when the gradient is equd to zero. Thus,
the required changes of the contral parametersare

2k (k)=—A; () (K) @)

Using Eq. (17), the corresponding PID contral parameters of the
controller loopr are

e, (K) =Ko (K) +2Ks, (K)]

_ _[kl,r(k) +2k2’,(k)]A'[
50 =i () ko () e (K)
_ —er(k)At
(k) =) +2ks (K)

Each PID controller parameter can be computed directly by usng
Egs (27) and (28) without any difficulty, but physicdly it is not suit-
able because the manipulated inputs and controlled outputs based on
the computed controller parameters may be out of the operating ranges
Typicdly, the condraints are defined a the minimum and maxi-
mum of x and y, X™=[X7" X3 -+ XN, XXX - XR],
Y=yt e ey ] andy™=[yrT YT eyl Thus the cone
graints placed on theinput and output varisbles x and y a each sam-
plingtimeare

(€5

XM<x (K)<x™
y"sy(Ksy™ e

However, these congtraint relationships cannot be transformed onto
the latent space because the sub-optimum may ooccur [Lakshminaray-
nanet d., 1997]. In order to implement the decomposition strategy, a
quedratic function (Eq. (21)) is il solved for each control loop, but
the manipulated variables mapped back from the latent gpace and
the corresponding controlled variables predicted from the DynPLS
modd should satisfy the condraints (Eg. (29)). If the esimated manip-
ulated variables exceed the bounds, the bound va ues of the manip-
ulated variableswould be goplied. Thisway, the manipulated varigbles
and the controlled variables would be located in the feasible input
condraint regions and the output condraint regions, respectively.

ILLUSTRATIVE EXAMPLES

Two case sudies are used to illugtrate the advantages of the pro-
posed identification and PID control design methodology. They will
be discussed separatdly in the sub-sections asfollows.

1. Example 1. Nonsguare System

Processes with unequa number of inputs and outputs are fre-
quently encountered in indudtria processes. For the convenience
of the control design, they are often squared by adding or deleting
the gopropriate number of inputs or outputs from the process to be
controlled [Reeves and Arkun, 1989]. Here a system with four in-
puts and three outputs is used to demondrate the performance of
the proposed technique. This sysgem isformulated as follows [Wolov-
ichand Flab, 1969):

3(st3)(st5) 6(s+1)
(s+1)(s*+2)(s*4) (st2)(st+4)
_ 2 1
€O e s+1
2(s° +7s+18) -2s
L (s+1)(s*3)(s*5) (s+1)(s+3)

2s+7 2st5
(s*+3)(s*4) (s+2)(s*+3)
2(s+5) 8(s*2) (20)
(s+D)(s*+2)(s*+3) (s+1)(s+3)(stb5)
1 2(55 +27s+34)
s+3 (st1)(s+3)(s*5) |

It isatypicd MIMO process with interaction. Firg, the am isto
build up the DynPLS modd based on the data. The identificetion
data set contains 1,000 samples obtained a 0.25 sampling time units,
Based on the stepwise modd-building procedure, the best find pre-
dicted dynamic modd is depicted as.

[y (k)
v [=PLst %K)
V(9 x(K)
L ya(K) X4(K)
vk +1) | [ 041y.(k) 001y, (k1) | | viK)
ya(k +1) | 5| 0.61y,(k) =0.22y,(k -1) | *| yi(k) (3D)
sk +1) | | 0.28ys(k) +0.0dys(k—1) | | y(k)
5 T T
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Fig. 3. Validation results of the DynPL S modd in Example 1: (a)
Y1, Y2 and y; (b) uy, U,, Us and u,.
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Fig. 4. Contral performance of the setpoint change in Example 1 with different inputs: (a) al inputs, (b) u,(k), u,(k) and uy(K), (c) u,(k),

U,(k) and u,(K), (d) uy(k), us(k) and uy(K).

Ancther 1,000 sets of data which does not come from the training
sts are produced in a Smilar way for vdidetion. The vdidation
resultsin FHg. 3 show thismode dosdy follows the actud process
behavior.

With the built DynPLS modd, the setpoint changes can be traced
by the on-line updated agorithm that is in control of the process.
Two cases with dl four inputs and only three inputs are compared.
With the proposed control design drategy, this indicates that the
proposed multiloop updated dgorithm is able to trace the setpoint
signd inthe MIMO process. FHg. 4 shows the response of the dosed-
loop sysem to the different setpoint changesin the reference Sgndl.
Itis observed that the ouputsin al cases can meet thelr Seedy-date
values exoept when the three inputs (u,, W, and u,) are sdected. Fig.
5 showsthe updated PID control parameters a each sampling point
derived from the system modd when dl inputs are selected. Table

1 ligs the contral cost (ZZuf(k)) and the sum square of the error

(SSE) of the controlled varidbles deviated from the st points for
different inputs. The cods of the control design and SSE with all
four inputs for the nonsquare system are Sgnificantly less than those
with another three inputs for the square sysem.

The percentage of variance captured by each PLS component is
liged in Table 2. It is observed that three principa components cap-
ture over 90% of the variance in the rdaionships of the MIMO pro-
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cess, which suggests that the process variables are fairly wel corre-
lated between inputs and outputs. Here different numbers of con-
trol loops basad on the number of components are sdected to show
the contral performance (Fig. 6). Since the first component accounts
for dmost 37% of dl the totd input variaions and 80% of al the
tota output variations, the control loop based on the first compo-
nent congtitutes the minimum control performance that Hill barely
meets our expectation. Fg. 6(a) shows that the offset occurs dueto
the modd error of the PLS mode with only one component even
if the contraller with an integra mode is used and the response of
the controlled score varidble is dlose to the desired setpoint score
vaiable (Fg. 7). With adding the second control loop with the second
componert, the control performance has been improved alittle, but
the offset of the output y, till exists (Fig. 6(b)). When three control
loops basad on the firgt three components are sdlected, the corre-
gponding contral performance is further improved (Fig. 6(C)). How-
ever, theimprovement is not very significant when the fourth com-
ponent is added, because the firgt three components dreedy account
for 92% of dl thetotd input variations and 98% of dl the totd out-
put varigtions. Therefore, fewer control loops based on the contri-
butions of only afew componentsin the subspace can be usad with-
out a subgtantia loss of the control performance. The decison de-
pends on how much information (of unaccounted variance) can be
removed. Severa suggested rulesfor sdlecting the number of com-
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Fig. 5. The multiloop PID controller parameters of the setpoint changesin Example 1. when all inputs are used: (a) loop 1; (b) loop 2;

(b) loop 3; (b) loop 4.

Table 1. Total cost of different inputsin Example 1

Table 2. Percentage of variance captured by each PL S component
in Example 1

Percent variance captured by each PL S component

Control inputs Input cost SSE
All four inputs 424.16 2741
u;, U, and u, 1756.90 39.05
Uy, U, and u, 6902.10 72.23
Uy, Uz and u, 2176.00 47.72

ponents were discussed in the literature [Zwick and Velicer, 1986;
Eagment and Krzanowski, 1982].
2. Example 2: Nonlinear pH Neutralization System

A pH neutrdization process [Lakshminaraynen et d., 1997; Nahes
et d., 1992], which hasthreeinput streams and one outlet sream, is
congdered. Theinput sreamsindude acid (HNQ,), buffer (NaHCO,)
and base (NaOH) streams. The process modd congigts of two reac-
tion invariants, three nonlinear ordinary eguations and one nonlin-
ear dgebraic equation, and the input streams are subject to con-
drants

Charge bdance

W,=[H"] -[OHT] —[HCO;] —2[COj] (32
Carbonateion baance
W,=[H,CO4 +[HCO;] +[CO;] (€x)]

Component
Xblock Total Y block Total
1 37.04 37.04 79.76 79.76
2 34.63 71.68 14.29 94.07
3 20.11 91.78 3.95 98.01
4 8.23 100.00 1.87 99.87
h_1 ,
D= ara o) @
dw,, _ 1
"'a?“t = ;&'ﬁ[ (War ~Was) 0 F(Wap ~Wad)t +(Was ~“Wai)a]  (35)
dw 1
"'a{b‘A = ;&'ﬁ[ (Wor ~Wha) 0y F(Who =Wpa)t +(Wes ~Wei)a]  (36)
_ 1+2x10™% o
W, +10"™ +Wb4W -10™=0 37
ubject to
0<0n(K)=<30, 0=u(k)<30 (38

Korean J. Chem. Eng.(Val. 22, No. 2)
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Fig. 6. Contral performance of the setpoint change in Example 1 with different number of components: (a) the first one component, (b)
thefist two components, (c) the first three componentsand (d) all components.
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Fig. 7. Projection of the controlled variables in Fig. 6(a) onto the
latent space.

In the above equations, h is the liquid level, W,, and W,,, are the
reection invariants of the effluent sream, and q,, ¢, and ¢; are the
acid, buffer and base flow rates, respectively. The definition of the
other parameters and the nomina operation conditions are ligted in
Table 3. The objective isto control the pH value and level hinthe

March, 2005

Table 3. Simulation parametersin Example 2

A=207 cn? W,.=5x10° M
C,=875mlcm*s* g.=16.6 ml s*

pK1=6.35 0,=0.55ml s*
pK2=10.25 0,=15.6 ml min™
W,,=3x10°M [Acid]=0.003 M HNO,
W,,=-3x1072M [Buffer] =0.03 M NaHCO,

W,;=—3.05x10°M

[Base] =0.003 M NaOH

tank by manipulating the base (qs) and acid flow rate (q).

Aswe know, any linear modd has a limited range of vdidity for
the nonlinear process. One way to solve this problem is to use the
union of the different locd linear moddsto goproximete the desired
process. In this study, based on the two desired operating regions
(around (i) pH=7.0, h=14.0 and (ii) pH=85 , h=12.0), the decom-
gpogtion of the modding problem into two DynPLS modesisem-
ployed here. Fig. 8 showsthe two different locd areas and the shaded
area covering dl the possble seady-date region under the differ-
ent inputs g, and ¢.. Before the proposed control Setrategy isim-
plemented, two DynPLS modds from two open-loop smulaion
data of the pH system need to be established for these desired op-
erating regions. In this case, the training data et is generated from
pseudo-random variation of inputs g, and ¢ The duration of eech
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25

Fig. 8. All the possble steady-gtate conditions of the pH neutral-
ization system represented by the shaded region. Two d-
lipsssindicated by the dashed linesarethelocal regionswith
three standard deviations of h and pH.

vaidioninterva is st to be 20 minutes. The corresponding changes
of pH and h are around these two desired operaing regions. The
two DynPLS models based on the stepwise modd-building dgo-
rithm are:

Modd I: (around pH=7.0, h=14)
¥.(k +1) =0.925y,(K) +yi(k —2)
¥,(k +1) =1.7032y,(k) —0.7236y,(k —1)
-0.0080y,(k —2) +y5(k —4) (29

Modd 11: (around pH=8.5, h=12)

¥,(k +1) =1.1066y,(k) —0.2818y,(k —1) +0.0121y,(k — 2)
—~0.0111y,(k =3) +yi(K)

¥,(k +1) =1.6773y,(k) —0.6817y,(k —1)
~0.0117y,(k ~1) +y3(k =3) (40)

Thefind optima combination of these two local modesis defined
by

2
y(k) :;W'Y'(k) 4y
wherew isthe rdative vaidity of each locd model and w, :Zpi‘ O
P isthevdidity function,
| — ool LPH =PHT, (1 1rh =hi
PrePn o0 5 mePO 204 OO (42)

with pH'=7.0, h'=14.0, pH’=85, h*=120, 0%,=0%,=1.0 and g}=
0%=1.0. Another data set generated by a smilar method is used to
veify the prediction capability of the DynPLS modds. Fg. 9 shows
the approximeation cgpability of the combination models for these
tegting data. The predicted result exactly follows the acutd process
behavior.

In the firg tedting condition, the contral srategy shows the set-
point changes in both the level and the pH vaue. In the firg time
period, the vaues of h and pH are kept a 14 and 7, respectively.
At time 100 the setpoints are shifted to the pH vaue of 8.5, and h
vaue of 12; at time 300 the setpoints are shifted to the pH vaue of
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Fig. 9. Validation reaults of the combinational DynPL S modd in
Example 2.

6.5, and h vdue of 16; Fig. 10 demondrates the setpoint tracking
ability of the proposad on-line updated dgorithm. The control per-
formance of the combinationad DynPLS moddsis stified. QDMC
and anonlinear neurd network modd predictive control (NNMPC)
are d s tested for making afar comparison. QDMC does not have
good results because the test region is not covered by the trained
mode (around pH=85 and h=12.0). The manipulated inputs and
the corresponding controlled outputs have fairly large varigions
even if the gppropriate vaue of the Lagrange multiplier condant is
included in QDMC in order to have an invertible dynamic matrix
and reduce the larger variaion of inputs. On the other hand, the de-
composition srategy of PLS can remove the components with fewer
contributions. The inputs would not have much larger fluctuetion
even if a time 500 the setpoints are shifted to the new areaaround
the pH vdue of 5, and h vdue of 10, which are not covered in the
operation regions of the trained modd. Furthermore, the controller
design of each loop can be directly computed without the invertible
problem. When the control performances of NNMPC and DynPLS
are compared, dthough NNMPC is allittle better than DynPLS, the
former is based on nonlinear optimization and the latter is only used

Korean J. Chem. Eng.(Val. 22, No. 2)
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Fig. 10. Contral performance of the setpoint changes (solid line)
based on QDM C (dashdat line), NNMPC (dotted ling) and
proposed modd (dashed ling) in Example 2: (a) and h; (b)
ql and q3'

to solve the quedratic objection (Eq. (24)) for each control loop (Eq.
(27)). When the setpaints are shifted to the new area after the time
point 500, asin the previous discussion, the responges of NNMPC
and DynPL S with the modeling error result in the performance de-
terioration.

Actudly, a process with noise dways exigs. Here the measured h
with noise N(0, 0.3) and pH with N(0, 0.2) are tested. Although the
control outputs can follow the setpoints in this Stuation, they are
around the desired satpaints (Fig. 11). The corresponding variations
of the controlled variables exigt due to the noise messurementsto a
large extent. Here the control design based on QDM C and NNMPC
are d=0 induded. The performances of the comparisons of these
control designs for the process with noise are the same as those for
the process without noise.

In addition to setpoint tracking, the buffer flow rate disturbance
is aso an important control object in the pH neutraization system.
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Fig. 11. Control performance of the setpoint changes (solid line)
based on QDM C (dashdat line), NNM PC (dotted line) and
proposad modd (dashed ling) in Example 2 when the mea-
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Fig. 12. Control performance of disturbance changes based on
QDMC (dashdot line), NNM PC (dotted line) and proposd
model (dashed line) in Example 2.

Fig. 12 shows the rejection of buffer disurbance ranges from 0.6
mil/sto 0.2 ml/s & time point 100 and from 0.2ml/sto L5ml/s a
time point 350. Because of the proposed control tructure with the
integration mode, the control performance shows thet the proposed
DynPLS has a good ahility in buffer disturbance rejection without
any large offset when compared with the other two methods

CONCLUSON

In this paper an SISO PID controller design drategy is deve-
oped for the design of the MIMO controller system as a subdtitute
for the traditiond decoupling design. The proposed method explores
many agpects of the control design of the MIMO system, such as
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the conceptud decomposition framework in the reduced subspace,
the MIMO modd development, the sequerntia training procedures,
the optimd control design and gpplications. This design procedure
may lead to a wider range of gpplications for the multiloop con-
troller gructure. The propaosed agorithm has the following advan-
tages (i) Itisampleto identify DynPLS sinceit is not necessary to
identify the MIMO system by a sequence of rday identification.
(i) The coupling effect in the MIMO system can be overcome effec-
tively. The PLS structure can be decomposed into severd pairs of
inputs and outputs, S0 the number of control 1oops can be sdlected
based on the variation captured by each pair. (iii) Unlike the sequen+
tid tuning of the multiple control loop for the iterdtive design in
eech control loop, the adaptive tuning PID controller rategy in
the SISO system can be implemented directly and Smultaneoudy
onto each loop of the multiloop contral design inthe MIMO system
under the decomposition structure of PLS. The potentia of the pro-
posed technique for prediction and process control is demondtrated
by means of amulation sudies. Modding and control performed
on the large-scade problems and the redl |ab-scale experiments will
be included in our next research.
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